
Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Pentest-Report Passbolt UWP Windows App 03.2024
Cure53, Dr.-Ing. M. Heiderich, M. Pedhapati

Index
Introduction

Scope

Identified Vulnerabilities

PBL-11-001 WP1: Insecure Regex pattern allows canNavigate bypass (Medium)

PBL-11-002 WP1: PasswordVault can be accessed by Desktop apps (Low)

PBL-11-003 WP1: JS execution by modifying LocalFolder Resources (Low)

PBL-11-005 WP1: Arbitrary requestId used as topic in background IPC (Medium)

Miscellaneous Issues

PBL-11-004 WP1: Insecure CSP Configuration in renderers (Low)

Conclusions

Cure53, Berlin · Mar 25, 24 1/11

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Introduction
“Finally, a password manager built for organizations that take their security and privacy
seriously. Passbolt is trusted by 15 000 of them worldwide, including F500 companies, the
defense industry, universities, startups and many others.”

From https://www.passbolt.com/

This report describes the results of a short best-effort penetration test and source code audit
against the Passbolt UWP Windows application. The work was requested by Passbolt SA in
February 2024 and performed by Cure53 in March 2024, in CW12. A total of two days were
invested to achieve the expected coverage for this project.

The work was structured according to a single work package (WP), which is as follows

• WP1: Source code audits against the Passbolt UWP Windows application

Cure53 was provided with the source code, test-supporting documentation, and any other
access required to perform the tests, using a white-box methodology. A team of two senior
testers was assigned to prepare, execute and close this project. All preparations were made
in March 2024, CW11, so that Cure53 could have a smooth start.

Communication during the test was done via a dedicated shared Slack channel between the
Passbolt and Cure53 teams, to which all involved personnel from both parties were invited.
Communication was smooth and there were not many questions to be asked, the scope was
well prepared and clear, and there were no significant roadblocks during the test. Cure53
provided frequent status updates on the test and related findings, and live reporting was
provided by Cure53 via the aforementioned Slack channel.

Due to the best-effort nature of this audit and the resulting time constraints, the Cure53 team
was able to achieve decent coverage of the scope items. Nevertheless, the team was able
to identify a total of five findings, four of which were classified as security vulnerabilities and
one as a general weakness with a lower potential for exploitation.

This security audit of the Passbolt UWP Windows application revealed a strong security
foundation implemented by the development team. The codebase is of high quality overall,
and the chosen architecture and frameworks promote inherent resilience. Nevertheless,
Cure53 was able to identify several vulnerabilities that need to be addressed quickly. While
it is positive that no high or critical severity findings were identified, it is still recommended
that these issues be addressed as soon as possible, as this will significantly improve the
security posture of the application and strengthen its overall robustness and reliability.

Cure53, Berlin · Mar 25, 24 2/11

https://cure53.de/
https://www.passbolt.com/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Finally, it should be noted that this audit was conducted as a best effort test, as the time
frame was rather short. However, some aspects of the scope have not yet been reviewed in
detail, particularly the application's JavaScript code, and it is therefore recommended that
these aspects be re-audited in the near future to ensure that any potential vulnerabilities or
weaknesses are uncovered. The report will now go into more detail about the scope and
setup of the test, as well as the material available for testing.

After that, the report will list all findings in chronological order, first the discovered
vulnerabilities and then the common vulnerabilities discovered in this test. Each finding will
be accompanied by a technical description, a PoC where possible, and mitigation or fix
advice. The report will then conclude with a summary in which Cure53 will elaborate on the
general impressions gained throughout this test and share some words about the perceived
security posture of the target, which is the Passbolt UWP Windows application.

Cure53, Berlin · Mar 25, 24 3/11

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Scope
• Source code audits & penetration tests against the Passbolt UWP Windows app

◦ WP1: Source code audits against the Passbolt UWP Windows application
▪ Sources:

• https://github.com/passbolt/passbolt-windows
▪ Commit:

• D36ea22226c49c45e35abd2254eea11def3c67d0
▪ Documentation:

• Detailed test-supporting documentation was shared with Cure53
◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · Mar 25, 24 4/11

https://cure53.de/
https://github.com/passbolt/passbolt-windows
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, all tickets are given a unique identifier (e.g., PBL-11-001) to
facilitate any future follow-up correspondence.

PBL-11-001 WP1: Insecure Regex pattern allows canNavigate bypass (Medium)
During source code review, a bug was found in the construction of the allowedUrls list that
uses currentUrl. The problem occurs because the dots in currentUrl are not properly
escaped. This allows any character to be substituted in place of the dot, potentially resulting
in incorrect or insecure URL pattern matching.

For example, if this.currentUrl is set to UUID.ai.passbolt.local, it's possible to bypass the
canNavigate restriction with a URL like UUID.ai?passbolt.local. This happens because the
regex designed to match allowedURLs doesn't take into account the unescaped dots,
allowing variations of the URL that should not be allowed.

The snippets below show the affected code, where currentUrl is used to construct the regex
in both background and rendered webviews.

Affected file #1:
passbolt-windows/passbolt/Services/NavigationService/BackgroundNavigationService.cs

Affected code #1:
 public void Initialize(string currentUrl)
 {
 this.currentUrl = currentUrl;
 string pattern =
$"^https://{this.currentUrl}/Background/(index-import\\.html|index-
auth\\.html|index-workspace\\.html)$";

 base.allowedUrls = new List<Regex>()
 {
 new Regex(@pattern),
 };
 }

Affected file #2:
passbolt-windows/passbolt/Services/NavigationService/RenderedNavigationService.cs

Cure53, Berlin · Mar 25, 24 5/11

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected code #2:
 public void Initialize(string currentUrl)
 {
 this.currentUrl = currentUrl;

 string pattern = $"^https://{this.currentUrl}/Rendered/(index-
import\\.html|index-auth\\.html|index-workspace\\.html)$";

 base.allowedUrls = new List<Regex>()
 {

The problem can be reproduced by running the following Javascript code in the renderer's
devtools.

PoC:
location.href='https://fcfea485-fbde-4acb-94c4-27a2b101573a.ai?
passbolt.local/app/passwords'

To work around this vulnerability, it is recommended to escape the dot in the changeUrl
function. This adjustment ensures that the dot is treated as a literal character in the regex,
rather than as a wildcard, thereby increasing the accuracy and security of the URL matching
process.

PBL-11-002 WP1: PasswordVault can be accessed by Desktop apps (Low)
It was discovered that the PasswordVault, which is used to store user configurations,
metadata, and secrets, is accessible by other desktop applications. This finding challenges
the claims in the provided threat model that it is not possible to extract information from
PasswordVault.

However, a review of the official documentation revealed that regular desktop applications,
excluding Appcontainer applications, can indeed access the information in PasswordVault,
contradicting the initial threat assessment.

Affected file:
passbolt-windows/passbolt/Services/CredentialLockerService/CredentialLockerService.cs

Affected code:
using Windows.Security.Credentials;

namespace passbolt.Services.CredentialLocker
{
 public class CredentialLockerService
 {
 private PasswordVault vault;
 private LocalUserManager localUserManager;

Cure53, Berlin · Mar 25, 24 6/11

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 public CredentialLockerService()
 {
 this.vault = new PasswordVault();
[...]

Because of this vulnerability, it is recommended to use the Data Protection API (DPAPI) to
store user-sensitive information. DPAPI provides a more secure method of data protection
because it provides user- and system-specific encryption capabilities that increase the
security of stored data against unauthorized access by other applications.

PBL-11-003 WP1: JS execution by modifying LocalFolder Resources (Low)
While investigating access control issues, a discovery was made regarding the interaction
between the background and renderer processes in the application. The use of webview's
SetVirtualHostNameToFolderMapping1 to run the UI from a local folder index was examined.
It was discovered that the JavaScript resources in this local folder are configured with
permissions that allow the currently logged on user to modify these files. Such modifications
could lead to JavaScript execution within the Passbolt Background and Rendered UIs.

Although exploiting this issue requires the adversary to have physical access to the local
computer, it is still a significant security concern. To mitigate this vulnerability, it is
recommended that the permissions of these JavaScript files be changed to read-only. This
change would prevent unauthorized modification of the files, thereby protecting the
application from potential malicious code execution from these resources.

PBL-11-005 WP1: Arbitrary requestId used as topic in background IPC (Medium)
During the audit of the Inter-Process Communication (IPC) flow facilitated by
WebMessageReceived, a vulnerability was identified in the messaging between
webviewRendered and webviewBackground. Specifically, IPC messages sent from
webviewRendered to webviewBackground can inappropriately send arbitrary WebMessage
topics from the background, resulting in the invocation of privileged WebMessage handlers
intended only for webviewBackground.

The root of the problem lies in the handling of requestId. The requestId sent by
webviewRendered to webviewBackground is repurposed as the topic value for responses
from webviewBackground.

1 https://learn.microsoft.com/en-us/dotnet/api/microsoft.web.[...]-dotnet-1.0.2365.46

Cure53, Berlin · Mar 25, 24 7/11

https://cure53.de/
https://learn.microsoft.com/en-us/dotnet/api/microsoft.web.webview2.core.corewebview2.setvirtualhostnametofoldermapping?view=webview2-dotnet-1.0.2365.46
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Since it is possible to set an arbitrary requestId, an adversary with access to
webviewRendered via XSS could, for example, send a message with "requestId" like this:

PoC:
window.chrome.webview.postMessage(`{
 "topic": "passbolt.password-expiry.get-or-find",
 "requestId": "passbolt.auth.logout",
 "message": ""
}`)

This results in webviewBackground sending a response with the following message:

{topic: 'passbolt.auth.logout', status: 'SUCCESS', message: null}

Although the above postMessage from webviewBackground is a response to
webviewRendered for the requestId passbolt.auth.logout, the main controller will treat it as a
legitimate topic, which will then be executed incorrectly. The above postMessage PoC from
webviewRendered will log out the user. However, the team couldn't find any cases with the
message value control, hence the reduced impact.

Affected file:
passbolt-windows/passbolt/Webviews/Background/dist/background-auth.js

Affected code:
[...]
this.worker.port.emit(this.requestId, "SUCCESS", settings);
[...]

To address this vulnerability, it is recommended that the functionality of requestId and topic
be clearly separated by using different attributes for each. This change ensures that the
requestId sent by webviewRendered cannot be misused as a topic to perform privileged
actions in webviewBackgroundBy clearly delineating these attributes, the application can
protect itself from unauthorized IPC message handling and improve overall security.

Cure53, Berlin · Mar 25, 24 8/11

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of these
results are vulnerable code snippets that did not provide an easy method by which to be
called. Conclusively, whilst a vulnerability is present, an exploit may not always be possible.

PBL-11-004 WP1: Insecure CSP Configuration in renderers (Low)
During the evaluation, it was discovered that the Content Security Policy (CSP) is not
properly configured in both renderers. The problem can be seen in the provided code
snippet where the critical content attribute of the meta tag is missing and the CSP value is
incorrectly assigned without an attribute. In this context, default-src is incorrectly treated as
an attribute. This syntax error causes the CSP directives not to be applied as intended.

Affected file:
passbolt-windows/passbolt/Services/LocalFolder/LocalFolderService.cs

Affected code:
 public async Task CreateRenderedIndex(string name, string script, string
stylesheet, string csp = null)
 {
 StorageFile indexFile = await this.CreateFile("Rendered",
name);
 var content = "<!DOCTYPE html> <html> <head> <meta
charset=\"UTF-8\"> " +
 $@"<meta http-equiv=""Content-Security-Policy"" default-src
'self'; script-src 'self'; img-src 'self' {csp}; />" +
 [...]

 public async Task CreateBackgroundIndex(string name, string
script, string csp = null)
 {
 StorageFile indexFile = await this.CreateFile("Background",
name);
 var content = "<!DOCTYPE html><html> <head> <meta
charset=\"UTF-8\"> " +
 (csp != null ? $"<meta http-equiv=\"Content-Security-Policy\"
default-src 'self' ${csp} https://api.pwnedpasswords.com; script-src 'self'
/></head>" : "") +
 [...]

To address the vulnerability, it is recommended to correctly assign the CSP value to the
content attribute of the meta tag. This adjustment will ensure the proper enforcement of the
CSP directives, enhancing the security of the application.

Cure53, Berlin · Mar 25, 24 9/11

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Conclusions
Overall, the Passbolt UWP Windows application made a robust impression in terms of its
security posture. This is also reflected in the number of issues outlined in this report, as only
low and medium severity vulnerabilities were found.

A white-box testing methodology was used to assess the specified areas of the application.
This assessment confirmed that the Passbolt UWP Windows application development team
successfully avoided and mitigated a number of typical desktop applications built on top of
Webview2.

An established Slack channel facilitated productive communication and seamless
information sharing between the teams. The clearly defined scope of the assessment and a
shared understanding of the target areas minimized potential roadblocks throughout the
process.

The Cure53 team was provided with a Passbolt Pro license for the application's API,
necessary builds, documentation, and threat model to facilitate testing of the Windows
application. The testing team effectively covered a significant portion of the scoped areas
during their audit. However, it is important to note that due to time constraints, the team was
unable to review the application's JavaScript code. With this in mind, it is recommended that
future testing efforts be expanded to include a thorough review of both the UWP
components and the JavaScript code to ensure a more comprehensive security
assessment.

The testing process began with an examination of the use of Json.NET to identify potential
deserialization issues. After a careful review, the team concluded that deserialization was
performed securely using SerializationBinder, effectively mitigating the associated risks. The
team then audited the application's handling of navigating to arbitrary URLs and opening
new windows. This part of the audit resulted in the identification of a problem documented in
PBL-11-001.

The audit included a thorough examination of the AddWebResourceRequestedFilter
implementation, which restricts requests to only those hosts on the background renderer's
allow list. The team did not find any problems or potential bypasses in this implementation.
In addition, the use of PasswordVault to store sensitive information was reviewed. A minor
issue was found in this area, which is detailed in PBL-11-002.

Finally, the IPC (Inter-Process Communication) interactions between the main controller,
renderer, and background components were reviewed for possible misconfigurations. This
review resulted in the identification of a specific problem that was documented in PBL-11-
005.

Cure53, Berlin · Mar 25, 24 10/11

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The team conducted a detailed investigation of the potential attack vectors outlined in the
documentation. During this exploration of various attack scenarios, several minor issues
were identified and documented as PBL-11-003 and PBL-11-004.

In conclusion, upon completion of this security audit, Cure53 gained a strong impression of
the security premise employed by the Passbolt team. The quality of the codebase was
generally impressive, while the architecture and frameworks employed generally installed
resilient design paradigms. Nevertheless, it is important to acknowledge the discovery of the
issues detailed in the respective tickets. Addressing and resolving these reported issues will
further strengthen the security posture of the application, increasing its robustness and
reliability.

Cure53 would like to thank Pierre Colart, Stephane Loege, Maxence Zanardo and Remy
Bertot from the Passbolt SA team for their excellent project coordination, support and
assistance, both before and during this assignment.

Cure53, Berlin · Mar 25, 24 11/11

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Passbolt UWP Windows App 03.2024
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	PBL-11-001 WP1: Insecure Regex pattern allows canNavigate bypass (Medium)
	PBL-11-002 WP1: PasswordVault can be accessed by Desktop apps (Low)
	PBL-11-003 WP1: JS execution by modifying LocalFolder Resources (Low)
	PBL-11-005 WP1: Arbitrary requestId used as topic in background IPC (Medium)

	Miscellaneous Issues
	PBL-11-004 WP1: Insecure CSP Configuration in renderers (Low)

	Conclusions

